
parMATT 

Parallel multiple alignment of protein 3D-structures with 

translations and twists for distributed-memory systems 

The User’s Manual 

 

 

 

parMATT v.1.2 

November 5
th
, 2020 



2 
 

Contents 

 

Abstract .......................................................................................................................... 3 

Version history ............................................................................................................... 4 

Introduction .................................................................................................................... 5 

Prerequisites ................................................................................................................... 6 

Compilation .................................................................................................................... 7 

The parMATT's options and variables ........................................................................... 8 

The parMATT’s input .................................................................................................. 10 

Running parMATT ....................................................................................................... 11 

The parMATT’s output ................................................................................................ 13 

parMATT’s output: understanding “Partial alignments” ........................................... 14 

The parMATT’s parallel performance and scalability ................................................. 15 

Post processing of the parMATT/MATT’s 3D alignment file .................................... 18 

Analysis of the common structural core....................................................................... 21 

The parMATT’s examples ........................................................................................... 23 

Collecting a set of 3D-models of homologous proteins ............................................... 26 

Implementation of parMATT in the laboratory practice ............................................. 28 

The parMATT’s license ............................................................................................... 29 

Citing parMATT .......................................................................................................... 30 

 

 
 

 

 

 

 



3 
 

Abstract 
 

A 3D-alignment of multiple protein structures is fundamentally important for a 

variety of tasks in modern biology and becomes more time-consuming with the 

increase of the number of PDB records to be compared. Ten years ago it was common 

to superimpose just a few protein structures due to a limited amount of 3D-data 

deposited at that time. Today, non-redundant collections of protein superfamilies are 

represented by hundreds of 3D-records, making it problematic to use the available 

single-CPU software to perform such a superimposition. More than 146 million 

sequence entries of the currently known proteins are deposited in the UniProtKB 

database, and as the PDB database demonstrates a geometric growth we are facing 

further increase in the number of known protein structures corresponding to diverse 

superfamilies, ruling out the use of single-CPU 3D-alignment programs at a daily 

routine in the future. 

The parMATT is a hybrid MPI/pthreads/OpenMP parallel re-implementation of the 

MATT algorithm designed to benefit from the growing availability of structural data 

by accelerating multiple structural alignment at large-scale analysis of protein 

families/superfamilies. The parMATT can be faster than MATT on a single multi-

core CPU, and provides a much greater speed-up on distributed-memory systems, i.e., 

computing clusters and supercomputers hosting memory-independent computing 

nodes. The parMATT can significantly accelerate the time-consuming process of 

building a multiple structural alignment from a large collection of 3D-models of 

homologous proteins. The output of MATT and parMATT are identical. 

The parMATT is the first and only program currently available which supports the 

MPI level of parallelism at aligning multiple protein structures. Its source code is 

distributed under the GNU public license version 2.0 and available for download at 

https://biokinet.belozersky.msu.ru/parMATT.   

 

 

 

 

 

 

https://biokinet.belozersky.msu.ru/parMATT


4 
 

Version history 
 

Version Date What’s new 

1.0 2018-Feb-20 - 

1.1 2019-Apr-14 (1) Load balancing on a large number of nodes 

was improved.  

(2) The “Partial Alignments” step – i.e., the 

post processing of the finally created 

structural superimposition – was 

parallelized using openMP to run on all 

cores of one multi-core CPU. The “Partial 

Alignments” step is not part of the MATT 

algorithm and has no effect on the structural 

superimposition of input proteins. This 

procedure is enabled by default in the 

MATT's source code, according to the 

original documentation, to make visual 

inspection of the sequence representation of 

the structural alignment easier; however, 

can have a very significant performance 

impact, particularly on alignments of large 

numbers of structures. In parMATT the 

“Partial Alignments” step is disabled by 

default. To activate this step add the ‘-p1’ 

flag to the command line string. See this 

page to understand the “Partial 

alignments”. 

1.2 2020-Nov-05 Fixed a bug that could lead to an incorrect format 

of the output PDB file with 3D-alignment if the 

superimposed structures contained more than 

99999 atoms. In previous versions of the program, 

in such cases, atomids after 100000 shifted the 

data line one character to the left, which could 

cause incompatibility with subsequent programs. 

As of this release, the atomid counter is reset to 1 

after 99999, which is the usual workaround for 

this well-known limitation of the classic PDB 

format.  

 

 



5 
 

Introduction 
 

A hybrid parallel programming technique has been used to re-implement the MATT 

algorithm and produce a faster program – parMATT, whose unique feature is the 

ability to accelerate the multiple protein structural alignment by running on multiple 

nodes of multiprocessor computer systems. The most computationally demanding 

steps of the algorithm – the initial construction of pairwise alignments between all 

input structures and further iterative extension of the multiple alignment – were 

parallelized using the MPI and pthreads, and the concluding refinement step was 

accelerated on one CPU by introducing the OpenMP support (i.e., the shared-memory 

multithreading). The temporary data are stored in the RAM and distributed across all 

allocated nodes to efficiently use the available resources. See the parMATT’s 

publication for details.  

Installation of parMATT from sources is straightforward, does not require significant 

investment of time from the user, and can be performed by free tools (i.e., GNU C++ 

and MPI compilers). The software does not have a graphical interface and has to be 

executed from a command-line. The input to parMATT is a set of protein structures in 

the PDB format, and the primary output is (1) a file in the PDB format with 3D 

superimposition of all input structures, and (2) a file in the FASTA format with a 

corresponding structure-based sequence alignment of the common structural core (i.e., 

structural equivalences which are shared by all proteins from the input set). The 

parMATT inherits the bioinformatics part (i.e., the algorithm), the input and the 

output formats, options and environmental variables from the MATT source code, and 

thus the parMATT's output files are identical to that of the MATT. The parMATT can 

be launched on a regular desktop multi-core CPU, but its key advantage is the ability 

to run on distributed-memory multiprocessor systems, i.e., computing clusters and 

supercomputers hosting memory-independent computing nodes.  

This User’s Manual focuses on the multiprocessor-related features as well as changes 

to the input options and environmental variables which have been introduced in 

parMATT. Implementation of parMATT in the laboratory practice as well as 

guidelines for collecting large data sets of 3D-models of homologous proteins will be 

also discussed. 

For a full list of options and features of the “Multiple alignment with translations and 

twists” algorithm please refer to the MATT’s user manual and the web-page 

http://matt.cs.tufts.edu/. 

 

 

http://matt.cs.tufts.edu/


6 
 

Prerequisites 

 

The parMATT is not hardware-specific and is expected to run on any architecture 

under a Linux/Unix operating system. The software was primarily developed for 

multiprocessor computer systems with distributed memory. It implements MPI for 

communication between processors (nodes) and pthreads to utilize multiple cores 

within each processor (node). Therefore, to achieve the best performance with 

parMATT you should use a computing cluster or a supercomputer hosting memory-

independent computing nodes, i.e. powerful computers with multiple CPUs. You can 

also use parMATT to construct a multiple structural alignment on a single desktop 

CPU with multiple computing cores (i.e., shared-memory computing system). 

To compile the parMATT binary from the source code you need a Linux/Unix 

computer system with MPI environment and pthreads support. This means that you 

would normally need an MPI compiler (e.g. Intel MPI or openMPI) and a C compiler 

(e.g., Intel icc or GNU gcc). You can install the free GNU tools openMPI 

(https://www.open-mpi.org/) and GCC (https://gcc.gnu.org) – both packages should 

be available from a developers software repository on any Linux distribution (e.g., in 

openSuSE you can install both packages in YaST). Or you can go for the all-in-one 

Intel Parallel Composer XE/Intel Parallel Studio XE pack which is commercial, 

though non-commercial license terms are available in particular cases.  

 

 

 

 

 

 

 

 

 

https://www.open-mpi.org/
https://gcc.gnu.org/


7 
 

Compilation 

 

After the prerequisites have been met enter the project folder and run: 

 
cd parMATT 

make 

 

You should see a similar command line output: 

mpicc -pthread -ggdb -Ithird_party -Iinclude -std=gnu99 -fopenmp -O3   -c -o 

src/matt/AssemblyOrder.o src/matt/AssemblyOrder.c 

mpicc -pthread -ggdb -Ithird_party -Iinclude -std=gnu99 -fopenmp -O3   -c -o src/matt/RMSD.o 

src/matt/RMSD.c 

mpicc -pthread -ggdb -Ithird_party -Iinclude -std=gnu99 -fopenmp -O3   -c -o src/matt/Score.o 

src/matt/Score.c 

mpicc -pthread -ggdb -Ithird_party -Iinclude -std=gnu99 -fopenmp -O3   -c -o 

src/matt/MultipleAlignment.o src/matt/MultipleAlignment.c 

mpicc -pthread -ggdb -Ithird_party -Iinclude -std=gnu99 -fopenmp -O3   -c -o src/matt/pdb.o 

src/matt/pdb.c 

mpicc -pthread -ggdb -Ithird_party -Iinclude -std=gnu99 -fopenmp -O3   -c -o 

src/matt/MultipleAlignmentOutput.o src/matt/MultipleAlignmentOutput.c 

mpicc -pthread -ggdb -Ithird_party -Iinclude -std=gnu99 -fopenmp -O3   -c -o src/matt/Matt.o 

src/matt/Matt.c 

mpicc -pthread -ggdb -Ithird_party -Iinclude -std=gnu99 -fopenmp -O3   -c -o src/matt/Extend.o 

src/matt/Extend.c 

mpicc -pthread -ggdb -Ithird_party -Iinclude -std=gnu99 -fopenmp -O3   -c -o src/matt/chain.o 

src/matt/chain.c 

mpicc -pthread -ggdb -Ithird_party -Iinclude -std=gnu99 -fopenmp -O3   -c -o src/matt/Vector.o 

src/matt/Vector.c 

mpicc -pthread -ggdb -Ithird_party -Iinclude -std=gnu99 -fopenmp -O3   -c -o src/matt/util.o 

src/matt/util.c 

mpicc -pthread -ggdb -Ithird_party -Iinclude -std=gnu99 -fopenmp -O3   -c -o src/matt/OctTree.o 

src/matt/OctTree.c 

mpicc -pthread -ggdb -Ithird_party -Iinclude -std=gnu99 -fopenmp -O3   -c -o src/matt/FileReader.o 

src/matt/FileReader.c 

mpicc -pthread -ggdb -Ithird_party -Iinclude -std=gnu99 -fopenmp -O3   -c -o src/matt/secondary.o 

src/matt/secondary.c 

mpicc -pthread -ggdb -Ithird_party -Iinclude -std=gnu99 -fopenmp -O3   -c -o src/matt/Protein.o 

src/matt/Protein.c 

mpicc -pthread -ggdb -Ithird_party -Iinclude -std=gnu99 -fopenmp -O3   -c -o 

src/mpi/mpi_pairscores.o src/mpi/mpi_pairscores.c 

mpicc -pthread -ggdb -Ithird_party -Iinclude -std=gnu99 -fopenmp -O3   -c -o 

src/mpi/mpi_serializer.o src/mpi/mpi_serializer.c 

mpicc -pthread -ggdb -Ithird_party -Iinclude -std=gnu99 -fopenmp -O3   -c -o src/mpi/mpi_helpers.o 

src/mpi/mpi_helpers.c 

mpicc -pthread -ggdb -Ithird_party -Iinclude -std=gnu99 -fopenmp -O3   -c -o 

src/mpi/mpi_multiple_alignment.o src/mpi/mpi_multiple_alignment.c 

mpicc -pthread -ggdb -Ithird_party -Iinclude -std=gnu99 -fopenmp -O3   -c -o src/mpi/mpi_pool.o 

src/mpi/mpi_pool.c 

mpicc -o bin/parMatt src/matt/AssemblyOrder.o src/matt/RMSD.o src/matt/Score.o 

src/matt/MultipleAlignment.o src/matt/pdb.o src/matt/MultipleAlignmentOutput.o src/matt/Matt.o 

src/matt/Extend.o src/matt/chain.o src/matt/Vector.o src/matt/util.o src/matt/OctTree.o 

src/matt/FileReader.o src/matt/secondary.o src/matt/Protein.o src/mpi/mpi_pairscores.o 

src/mpi/mpi_serializer.o src/mpi/mpi_helpers.o src/mpi/mpi_multiple_alignment.o src/mpi/mpi_pool.o -

pthread -ggdb -Ithird_party -Iinclude -std=gnu99 -fopenmp -O3 –lm 

 

If the compilation has been successful the executable binary file parMatt would be 

placed in the ’./bin’ folder. 



8 
 

The parMATT's options and variables 

 

The parMATT supports the same list of options (i.e., command line arguments) as the 

original MATT program. 

Special characteristics of parMATT are: 

 The '-d' option for “display status” is not supported; 

 The '-p' option for “partial alignments” is disabled by default (i.e., -p0). See 

this page to understand the “Partial alignments”; 

 The ‘-t’ option specifies the number of pthreads t to be spawned on each 

node to process subtasks (i.e., build the alignment). Additional pthreads will 

spawned for administrative purposes - one pthread for communication on each 

slave node, and two pthreads on the master node – one for communication and 

one for tasks’ scattering. E.g. if you run parMATT with ‘-t 4’ parameter than 

4+1 pthreads would be spawned on each slave node (4 for the alignments and 1 

for communication) and 4+2 pthreads would be spawned on the master node (4 

for the alignments, 1 for communication, and 1 for tasks' scattering). The 

default is ‘-t 1’ and would significantly downgrade the performance in most 

cases as it assumes that only a single computing core is available in a CPU. 

You should set this parameter manually for a specific hardware – see 

recommendations and examples below. 

Recommendations on selecting the ‘-t t’ number of pthreads: t should be set equal to 

the number of physical cores on your nodes. If your PC/cluster has hardware 

hyperthreading enabled, you may set the t to the number of threads (usually equal to 

the number of cores × 2). E.g., to run parMATT on multiple nodes, where each node 

hosts an Intel Core i7 CPU with 4 physical cores (8 logical threads), you should use 

‘-t 4’. Or to run parMATT on multiple nodes, where each node hosts an Intel Xeon 

CPU E5-2697 v3 CPU (14 physical cores or 28 threads), you should use ‘-t 14’. 

parMATT supports the same list of environment variables as the original MATT 

program (i.e., MATT_SEARCH_PATH, MATT_PDB_PATH, MATT_PARAMS). To set 

a variable use the export feature of the shell: 

export VAR="VALUE" 

Then you can check if the assignment worked: 
echo $VAR 

A new environment variable MATT_LOG_LVL is introduced to control the amount of 

data to be displayed in the standard output of parMATT. This variable is intended for 



9 
 

developers and is not needed for the 'scientific' use. This variable does not influence 

the results or the format of the output alignments produced by the parMATT. 

The possible values are: 

 MATT_LOG_LVL 0 – log only timings for pairwise alignments and iterative 

part of the algorithm; 

 MATT_LOG_LVL 1 – all above plus the information about tasks sent; 

 MATT_LOG_LVL 2 – all above plus timings for each alignment and barrier 

wait time (default). 

To set the variable use the export feature of the shell: 

export MATT_LOG_LVL="0" 

Then you can check if the assignment worked: 
echo $MATT_LOG_LVL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 
 

The parMATT’s input  
 

The input to parMATT is a set of protein structures in the PDB format. One PDB file 

should represent a single protein chain. 

There are two ways of providing the list of input PDB files to parMATT/MATT. The 

first one is via a list file – plain text file stating the paths to each input PDB file on a 

separate line, one below the other: 

 
sbatch -N 8 ompi parMatt -L input.list -t 14 -o output 

 

The second way is to provide each input PDB file path as a separate command line 

argument: 

 
sbatch -N 8 ompi parMatt file1.pdb file2.pdb ... -t 14 -o output 

sbatch -N 8 ompi parMatt *.pdb -t 14 -o output 

sbatch -N 8 ompi parMatt `find ./ -name *.pdb` -t 14 -o output 

 

The second way may appear more convenient, but it is impractical. The parMATT 

was designed to accommodate computationally hard tasks, e.g. to align large data sets 

of protein structures. Large datasets = a lot of input PDB file = long command line 

arguments. In other words, the paths to a large number of PDB files will most likely 

exceed the default maximum length of command line arguments allowed by the 

Linux/Unix shell. Therefore, we recommend the list-file based input when using the 

parMATT. You can prepare the list file using the command: 

 
find /absolute/path/to/pdbs -name "*.pdb" > list.file 

Please note that the command above will produce a list-file with absolute paths to 

your input PDB files, i.e., this list-file can be used to execute parMATT from any 

location on your local filesystem. 

 

 

 

 

 

 



11 
 

Running parMATT 
 

The parMATT software is faster than MATT on a single desktop CPU and can 

provide much greater acceleration on distributed-memory systems, i.e., computing 

clusters and supercomputers hosting memory-independent computing nodes. The 

difference between running MATT on a local computer and running parMATT on a 

computing cluster/supercomputer is explained below: 

1. to run on multiple nodes (i.e., multiple CPUs) parMATT has to be launched as an 

MPI program by the appropriate MPI utility (not required for local execution on a 

desktop computer); 

2. the ‘-t t' parameter should be set equal to the number of physical cores in the CPUs 

which are used in your computing cluster/supercomputer, i.e., the ‘-t t' parameter 

sets the numbers of cores to be used on each node, and the number of nodes should 

be set as a separate parameter to the MPI utility (see an example below). If your 

PC/cluster has hardware hyperthreading enabled, you may set the t to the number 

of threads (usually equal to the number of cores × 2).  

This may sound complicated, but it’s not. You just need to add a few MPI-related 

"words" as a prefix to the regular command, and you need to learn the number of 

physical cores in the CPUs used in your computing cluster/supercomputer – from 

your administrator or by exploring the vendor's site (the CPU model can be found in 

the /proc/cpuinfo file). Once you know the command and the number of 

physical cores in your CPU model, running parMATT will be as easy as running any 

other program on your local computer. 

To run the parMATT you need to execute the 'bin/parMatt' binary in the MPI 

environment and provide the ‘-t t’ parameter. The exact command will depend on the 

particular setup of your computing system. A few examples are provided below. 

Launch parMATT locally on 4 physical cores of a single Desktop CPU: 

 
/path/to/parMatt -t 4 -L input.list -o output 

 

Launch parMATT on 8 nodes (i.e., 8 CPUs), 14 physical cores on each node, using 

the mpirun: 

 
mpirun -np 8 /path/to/parMatt -t 14 -L input.list -o output 

 

Launch parMATT compiled with OpenMPI on 8 nodes (i.e., 8 CPUs), 14 physical 

cores on each node, using the Slurm Workload Manager (sbatch and ompi script): 



12 
 

 
sbatch -N 8 ompi /path/to/parMatt -t 14 -L input.list -o output 

Launch parMATT compiled with Intel MPI on 8 nodes (i.e., 8 CPUs), 14 physical 

cores on each node, using the Slurm Workload Manager (sbatch and impi script): 

 
sbatch -N 8 impi /path/to/parMatt -t 14 -L input.list -o output 

Launch parMATT on 8 nodes (i.e., 8 CPUs), 14 physical cores on each node, using 

the Cleo Workload Manager: 

 
cleo-submit -np 8 /path/to/parMatt -t 14 -L input.list -o output 

If you do not know how to launch a program on multiple nodes (i.e., CPUs) of your 

computing cluster or supercomputer you should contact the administrator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 
 

The parMATT’s output 
 

The parMATT inherits the bioinformatics part (i.e., the algorithm), the input and the 

output formats, options and environmental variables from the MATT source code, and 

thus the parMATT's output alignment is identical to that of the MATT. 

 

The primary parMATT's output is  

 a file in the PDB format with 3D superimposition of all input structures; 

 a file in the FASTA format with a corresponding structure-based sequence 

alignment. By default, the FASTA file contains only the common structural 

core alignment (i.e., structural equivalences which are shared by all proteins 

from the input set), and can be further enriched by implementing the “Partial 

alignments” algorithm. See this page to understand the “Partial alignments”. 

 

The following particular files are produced by parMATT/MATT on successful 

completion: 

 the coordinate representation of a multiple structural alignment, i.e., a 

PDB file with aligned coordinates of all 3D-models from the input; 

 the sequence representation of a multiple structural alignment, i.e., a 

sequence alignment file in FASTA format; 

 a text file with a summary of the input PDBs (the pairwise comparison tree) 

and the output superimposition (number of residues in the core alignment, 

RMSD of the core alignment, the MATT raw score and the sequence 

representation of the alignment in the PHYLIP format); 

 a Rasmol script to highlight aligned residues. 

 

 

 

 

 

 



14 
 

parMATT’s output: understanding “Partial alignments” 
 

As explained above, the output of parMATT is the 3D-alignment in the PDB format 

and its sequence representation in the FASTA format. The conversion of the 3D-

alignment (i.e., superimposition of atom coordinates in the 3D-space) into the 

alphabet form is actually not as trivial as it may seem. In fact, it is complex and highly 

resource-demanding process.  

By default, the parMATT will produce the FASTA alignment of only the common 

core residues, i.e. structural equivalences which are shared by all proteins from the 

input set, as shown below on Figure A. This representation may be further improved 

by implementing the “Partial Alignments” algorithm. Formally, the “Partial 

Alignments” step is not part of the MATT algorithm and has no effect on the 

structural superimposition of input proteins (i.e., the output PDB files containing the 

3D-alignment will be identical with or without this step). When this step is enabled, 

the sub-alignments of residues that are not equivalent in all proteins but can be 

matched in some homologs (i.e., the partial alignments) will be included in the 

FASTA file to accompany the common core alignment, as shown below on Figure B. 

This will produce a more content-rich output and facilitate its visual inspection, but 

will require additional computer time.   

To activate the “Partial Alignments” step add the ‘–p1’ flag (no space) to the 

parMATT command. The default is ‘–p0’. 

 
A. Sequence representation of 3D-alignment with “Partial alignments” disabled  

 
B. Sequence representation of 3D-alignment with “Partial alignments” enabled 



15 
 

The parMATT’s parallel performance and scalability 

The parMATT was tested on 1-256 nodes (i.e., 14 cores per node, up to 3584 cores in 

total). The results are discussed in detail in the corresponding parMATT publication 

(https://dx.doi.org/10.1093/bioinformatics/btz224).  

In brief, the observed computational efficiency and saturation point where 

performance growth stopped were proportional to the number of PDB structures in the 

input set and their size (i.e., the number of amino acid residues), with a better 

performance on a larger number of nodes observed when aligning more populated sets 

of a bigger protein structures.  

Thirty non-redundant sets of hundreds of protein structures sharing a common 

structural core have been constructed based on the CATH classification of 

superfamilies and used to evaluate computational performance of the parMATT 

software. Parallel performance of the alignment of smaller sets which contained 43-93 

protein structures with an average size of 90-228 amino acid residues stagnated 

starting from 4-16 nodes with a speed-up of at most x2.49 (Fig. 1, A). On the contrast, 

the speed-up reached at most x10.62 and stagnated starting from 64 nodes when 

superimposing 275-341 protein structures with an average size of 191-348 amino acid 

residues (Fig. 1, B and Fig. 2, A).  

To further evaluate the potentials of parMATT at aligning more massive datasets two 

series of structural variants of a 351 amino acids long protein were produced by 

molecular dynamics: (1) a test set of 2000 conformations and (2) a control set of 275 

conformations which was similar to the CATH superfamily set '3.20.20.80' in terms 

of the number of structures and their size. Both sets were submitted to MATT and 

parMATT for a 3D-alignment. The 3D-superimposition of 2000 structural variants by 

parMATT showed a maximum speed-up of x31.7 on 128 nodes compared to the 

performance of MATT on a single multi-core node, i.e., 4.08 hours when running on a 

distributed-memory system compared to 5.39 days on one 14-core CPU (Fig. 1, C and 

Fig. 2, B). The performance of parMATT on the control set of 275 conformations was 

equivalent to that on the CATH superfamily set '3.20.20.80' (Fig. 1, B and Fig. 2, A). 

Thus, the observed improvement of performance on a larger number of nodes was due 

to the increase of the number of input structures and was not a consequence of 

aligning structural variants which corresponded to the same protein sequence, as 

parMATT was used to perform a 3D-superimposition.  

These results indicate that parMATT can significantly accelerate 

superimposition of hundreds of structures of different proteins by running on  

2-64 nodes. Utilization of a larger number of nodes can be practically useful 

when aligning more populated collections of protein structures. 

https://dx.doi.org/10.1093/bioinformatics/btz224


16 
 

 

(A) Smaller CATH sets 

  

(B) Larger CATH sets 
(C) MD-generated ensemble  

Fig. 1. Acceleration provided by parMATT at constructing multiple 3D-alignments of protein 

structures when running on distributed-memory system. The speed-up achieved by parMATT on 1-

256 nodes was calculated based on the performance of MATT in the openMP mode on all cores of 

one node. Each node contained 14 computing cores. (A) Parallel performance of 3D-alignment of 

smaller CATH superfamily sets which contained 43-93 protein structures with an average size of 

90-228 amino acid residues. The corresponding running times were within several minutes. (B) 

Parallel performance of 3D-alignment of larger CATH superfamily sets which contained 275-341 

protein structures with an average size of 191-348 amino acid residues, and a control set of 275 

structural variants of a 351 amino acids long protein produced by the molecular dynamics which 

was similar to the CATH superfamily set '3.20.20.80' in terms of the number of structures and their 

size. The corresponding running times are provided in Fig. 2, A. (C) Parallel performance of 3D-

alignment of a set of 2000 structural variants of a 351 amino acids long protein produced by the 

molecular dynamics. The corresponding running times are provided in Fig. 2, B 



17 
 

 

  

(A) Larger CATH sets 
(B) MD-generated ensemble  

Fig. 2. The running time of parMATT at constructing multiple 3D-alignments of protein structures 

in a parallel environment of a distributed-memory system. Each node contained 14 computing cores. 

(A) Duration of 3D-alignment of larger CATH superfamily sets which contained 275-341 protein 

structures with an average size of 191--348 amino acid residues, and a control set of 275 structural 

variants of a 351 amino acids long protein produced by the molecular dynamics which was similar 

to the CATH superfamily set '3.20.20.80' in terms of the number of structures and their size. The 

corresponding acceleration plots are shown in Fig. 1, B. (B) Duration of 3D-alignment of a set of 

2000 structural variants of a 351 amino acids long protein produced by the molecular dynamics. The 

corresponding acceleration plots are shown in Fig. 1, C. 

 

 

 

 

 

 

 

 



18 
 

Post processing of the parMATT/MATT’s 3D alignment file 
  

On successful completion the parMATT/MATT produces, among other output, a file 

in the PDB format with 3D superimposition of all input structures. In this large single 

PDB file all input proteins are listed as individual chains and this format may not 

always be convenient for further analysis, especially when comparing large datasets 

of structures. In practice, you may want to split this large single PDB alignment 

file into multiple PDB files each corresponding to an individual protein, but 

preserving the common coordinate space (i.e., so that these multiple PDB files appear 

aligned if opened altogether, e.g., by a 3D graphical viewer like PyMol). 

To post process the parMATT/MATT’s 3D alignment file you can use an accessory 

script splitMATT2chains.sh, which can be downloaded from the parMATT’s 

web-page. Please note that THIS SOFTWARE IS PROVIDED "AS IS", WITHOUT 

WARRANTY OF ANY KIND. PLEASE CHECK MANUALLY THE 

CONSISTENCY OF THE GENERATED OUTPUT. An example is discussed below. 

To reproduce this example on your own computer you can download the input files by 

using this [link]. The command line syntax is intended from Linux Bash shell. 

Extract the files from archive and enter the project folder: 

tar xzf Example_split.tar.gz 

cd Example_split  

Launch the script: 

/path/to/splitMATT2chains.sh 2.60.40.10.pdb 2.60.40.10.txt output 

This command will write 643 PDB files corresponding to the aligned proteins to 

folder output. Each file will be entitled as the original PDB files which were 

submitted to parMATT/MATT as input (in this example the files will be named 

according to their PDB codes).  

You can now enter the output folder and load all 643 PDB files into the PyMol 

graphical viewer (this operation requires a modern Desktop computer with a 

significant amount of RAM): 

cd output 

pymol *pdb 

 

 

https://biokinet.belozersky.msu.ru/sites/default/data/splitMATT2chains
https://biokinet.belozersky.msu.ru/sites/default/data/Example_split.tar.gz


19 
 

All structures, loaded from separate PDB files, will appear superimposed in the 3D 

viewer:  

 

You may want to apply additional settings to create a nicer view. Execute these 

commands in the PyMol’s internal command line: 

bg_color white 

hide everything 

bg_color white 

set cartoon_discrete_colors, 1 

set cartoon_oval_length, 0.3 

set cartoon_oval_width, 0.035 

set cartoon_loop_radius, 0.1 

set cartoon_rect_width, 0.035 

set cartoon_rect_length, 0.5 

 

show cartoon 

color black 

color violet, ss h 

color yellow, ss s 

set ray_shadows, 0 

 

 



20 
 

These settings will provide the following view: 

 

 

You can further use the ray command in PyMol to create high-quality illustrations of 

your structural superimposition (can take some time for a large number of structures): 

set ambient, 0.5 

ray 1280, 1024 

 



21 
 

Analysis of the common structural core 
 

On successful completion the parMATT/MATT produces, among other output, an 

instruction file for JMol (the “.spt” file) to highlight the common structural core of the 

aligned protein structures – i.e., structural equivalences which are shared by all 

proteins from the input set. This feature can help to compare evolutionarily related 

proteins and study the structure-function relationship. The JMol is a useful program, 

but it was not designed to handle large datasets of hundreds to thousands PDB 

structures. Therefore, it seems more appropriate to study the common structural core 

of the parMATT alignment by a much more versatile PyMol engine. To convert the 

“.spt” file with instructions for JMol into the PyMol format you can use the 

jmol2pymol.pl script. Below is a complete guide to using this script, explained on a 

particular example. Please note, that in this example 643 PDB files have to be loaded 

at once into PyMol. This operation should not be a problem for a modern Desktop 

computer, but may take a few minutes on a slower PC or a Notebook. Please be 

patient. As an alternative, delete as many PDB structures from the set and then run the 

PyMol to accelerate this demonstration. 

Please note that THIS SOFTWARE IS PROVIDED "AS IS", WITHOUT 

WARRANTY OF ANY KIND. PLEASE CHECK MANUALLY THE 

CONSISTENCY OF THE GENERATED OUTPUT. 

#Download the example data 

wget https://biokinet.belozersky.msu.ru/sites/default/data/Example_split.tar.gz 

tar xzf Example_split.tar.gz 

 

#Download the splitMATT2chains.sh script to parse the PDB output file 

wget https://biokinet.belozersky.msu.ru/sites/default/data/splitMATT2chains 

mv splitMATT2chains splitMATT2chains.sh 

chmod 755 splitMATT2chains.sh 

 

#Download the jmol2pymol.pl script to prepare PyMol instruction file 

wget https://biokinet.belozersky.msu.ru/sites/default/data/jmol2pymol.pl  

chmod 755 jmol2pymol.pl 

 

#Enter the data folder 

cd Example_split/ 

 

#Run the splitMATT2chains.sh to split the PDB output file into separate files 

../splitMATT2chains.sh 2.60.40.10.pdb 2.60.40.10.txt split_pdbs 

 

#Run the jmol2pymol.pl to convert the JMOL annotation file to the PyMol format 

../jmol2pymol.pl 2.60.40.10.spt 2.60.40.10.txt 2.60.40.10.py 

 

#Enter the folder with aligned PDB files 

cd split_pdbs/ 

 

 

 

https://biokinet.belozersky.msu.ru/sites/default/data/Example_split.tar.gz
https://biokinet.belozersky.msu.ru/sites/default/data/splitMATT2chains
https://biokinet.belozersky.msu.ru/sites/default/data/jmol2pymol.pl


22 
 

#Open all files in PyMol 

pymol *pdb 

 

#Now, in the PyMol’s command line run the PyMol annotation file 

>run ../2.60.40.10.py 
 

 

 

The listed commands will eventually produce the graphical output shown above. The 

common structural core is colored in pink (α-helixes), yellow (β-sheets), and black 

(loops), and the regions which are not part of the common structural core (are not 

equivalent in all input structures) are colored in white. 

You can further use the ray command in PyMol to create high-quality illustrations of 

your structural superimposition (can take some time for a large number of structures): 

set ambient, 0.5 

ray 1280, 1024 



23 
 

The parMATT’s examples 

 

The input and pre-calculated output files for these examples can be downloaded from 

the parMATT’s page at https://biokinet.belozersky.msu.ru/parmatt  

 

Example 1 (small dataset) 

This small dataset contains only 5 protein structures of highly structurally similar 

(>90% of matching secondary structure elements) MAP kinases. The multiple 

structural alignment of this set by parMATT should take just a few seconds on any 

modern hardware. Thus, the purpose of this data set is to quickly verify whether your 

build of parMATT’s binary from the source code was successful.  

Download data: [download] (Ctrl-click the link to initiate download in your browser) 

Execution. Extract the data from the downloaded archive, create the output folder, 

enter the input folder, and finally run the parMATT: 

tar xzf Example_MAPK.tar.gz 
cd Example_MAPK/ 

mkdir output_new 

cd input 

/path/to/parMatt -t 4 -L *pdb -o ../output_new/test 

Your output files will be written to the output_new folder. You can check the pre-

calculated output files for this example in the output folder of the extracted archive. 

If the program fails to produce the output or takes a significant amount of time on this 

example you should revise the compilation procedure. 

 

Example 2 (large dataset) 

The purpose of the large dataset is to test scalability of parMATT on your 

multiprocessor system. The dataset should take ~2-5 hours to align on one CPU 

(depending on the CPU), and running parMATT on multiple nodes (many CPUs) 

should provide a significant speed-up. Before using the parMATT to do actual work 

you are advised to run the program several times with different resources, i.e., on 1 

node/CPU, 2 nodes/CPUs, 4 nodes/CPUs, etc, and evaluate the scalability of your 

parMATT build on your particular hardware. The exact acceleration will depend on 

https://biokinet.belozersky.msu.ru/parmatt
https://biokinet.belozersky.msu.ru/sites/default/data/Example_MAPK.tar.gz


24 
 

the particular configuration of your multi-processor system. However, if you do not 

experience any significant speedup at all, that would indicate a problem.  

Download data: [download] (Ctrl-click the link to initiate download in your browser) 

The input. The input set for this example is based on the 3.30.390.10 superfamily 

(Enolase-like, N-terminal domain) according to the CATH classification. The non-

redundant set contains 111 protein structures in the PDB format with an average 

length of 130 amino acids.  

Execution. Extract the data from the downloaded archive, create the output folder, 

enter the input folder, create the input list file, and finally run the parMATT: 

tar xzf Example_3.30.390.10.tar.gz 
cd Example_3.30.390.10/ 

mkdir output_new 

cd input 

find ./ -name "*pdb" > list.file 

/path/to/parMatt -t 4 -L list.file -o ../output_new/3.30.390.10 

Note, that the last command (i.e., the execution of the parMATT) will start parMATT 

on 4 physical cores of your local CPU and thus should be used only on your local 

desktop computer. To run on computing cluster or supercomputer please use a 

different command depending on the particular hardware and task manager (see the 

“Running parMATT” section above). 

Running times. The amount of time required to calculate the alignment of the 

provided set will, of course, depend on the computing power implemented for the 

task, however will take hours by the order of magnitude: 

 1 x Intel Core i7-4790 3.60GHz (4 physical cores) ~ 4.6 hours; 

 1 x Intel Xeon CPU E5-2697 v3 2.60GHz (14 physical cores) ~ 2.2 hours; 

 4 x Intel Xeon CPU E5-2697 v3 2.60GHz (14 physical cores) ~ 0.7 hours; 

In other words, running the parMATT on 4 nodes (4 CPUs) can provide x3.5 speed-

up compared to the computational performance on one CPU. The exact acceleration 

will depend on the particular configuration of your multi-processor system. However, 

if you do not experience any significant speedup at all, that could mean one of the 

following: 

 You are using the wrong command to launch the program on multiple nodes. 

Check the syntax of your MPI utility/queue manager; 

 You did not use MPI compiler or it did not work. Revise your compilation 

procedure or contact your administrator for advise; 

https://biokinet.belozersky.msu.ru/sites/default/data/Example_3.30.390.10.tar.gz


25 
 

 Your hardware is not working properly. This is the most unlikely scenario. Try 

to troubleshoot the software part first (see above) and then contact your 

administrator as a last resort. 

 

Output. Four files will be created on successful completion in the output_new 

folder: 

 The 3.30.390.10.pdb file with the coordinate representation of a multiple 

structural alignment, i.e., a PDB file with aligned coordinates of all 3D-models 

from the input; 

 The 3.30.390.10.fasta file with the sequence representation of a multiple 

alignment of the common structural core, i.e., a sequence alignment file in 

FASTA format; 

 The 3.30.390.10.txt file with a summary of the input PDBs (the pairwise 

comparison tree) and the output superimposition (number of residues in the 

core alignment, RMSD of the core alignment, the MATT's alignment quality 

score and the sequence representation of the common core alignment in the 

PHYLIP format);; 

 The 3.30.390.10.spt file with a Rasmol script to highlight aligned residues. 

You can check the pre-calculated output files for this example in the output folder of 

the extracted archive. 

 

 

 

 

 

 

 

 

 

 

 



26 
 

Collecting a set of 3D-models of homologous proteins 

 

The increasing number of protein structures in public databases provides new 

opportunities for comparative bioinformatic analysis of remote evolutionary relatives 

which have acquired new functions during natural selection and specialization from a 

common ancestor but preserved a common structural core. The parMATT can 

significantly accelerate the time-consuming process of building a structural alignment 

from a large collection of 3D-models of homologous proteins. 

In general, there are three ways of collecting a set of functionally diverse homologous 

with a common structural organization. 

 Analysis of the literature. Some protein superfamilies are well studied (e.g., 

the α/βhydrolase superfamily) and numerous scientific publications are 

available describing particular families and corresponding members with 

different functions. The respective three-dimensional models of these proteins 

can be manually collected from the PDB database. The advantage of collecting 

your PDB set by hand is that it will be based on experimental research and the 

corresponding functional annotation will be available for each included protein. 

The downside is that you can miss rare proteins whose properties have not been 

studied yet or were only poorly studied, as well as miss out protein structures 

recently added to the PDB but not yet described in the literature. 

 Structure similarity search. Bioinformatic approach to collecting a set of 

remote homologs is based on detecting a significant structural similarity 

between the user-defined query protein and every protein structure available in 

the PDB. Selection of a query protein depends on the particular task and 

research objective. It can be the target protein selected for the further 

experimental design, or the most studied member of the superfamily. 

The PDBeFold server (http://www.ebi.ac.uk/msd-srv/ssm/) is available on-line 

and provides easy and intuitive interface to search for structure similarities in 

the PDB database. The advantage of collecting your PDB set by bioinformatic 

analysis is that all information available up to the date in public databases will 

be taken into account, including poorly studied and recently added proteins. 

The downside is that this process usually requires some knowledge of 

bioinformatics to collect and postprocess the set (e.g., eliminate redundant 

entries). 

 Mustguseal server. Mustguseal is a bioinformatic protocol designed to build 

alignments of protein families and superfamilies, and a platform (a web-server) 

to provide a user-friendly web-based interface to the Mustguseal protocol 

through the World Wide Web (https://biokinet.belozersky.msu.ru/mustguseal). 

http://www.ebi.ac.uk/msd-srv/ssm/
http://www.ebi.ac.uk/msd-srv/ssm/
https://biokinet.belozersky.msu.ru/mustguseal
https://biokinet.belozersky.msu.ru/mustguseal


27 
 

Automatic collection and filtering of a non-redundant set of remote homologs 

by structure similarity search in the PDB database is part of the Protocol. 

Mustguseal can be used to collect a large set of proteins with diverse functions 

within a common structural core. This set can be downloaded by the user and 

aligned using the parMATT. The Mustguseal protocol and web-server is 

described in (Suplatov et al., Bioinformatics 2018). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1093/bioinformatics/btx831


28 
 

Implementation of parMATT in the laboratory practice 

 

Comparative bioinformatics is the cornerstone of computational approaches to 

understanding the sequence-structure-function relationship in proteins. Accurate 

alignment of protein families/superfamilies is crucial at studying structure-function 

relationship, but presents a methodological challenge due to low sequence similarity 

of evolutionarily distantly related homologues. Protein structure is more conserved 

throughout the evolution compared to sequence. It is therefore expected that three-

dimensional alignment will provide more significant clues to protein function, 

properties and evolution than sequence alignment alone. Bioinformatic analysis of 

conserved and variable positions in large alignments of protein families/superfamilies 

can help with understanding of protein mechanisms, engineering enzymes with 

improved properties for practical application, and designing novel modulators of the 

activity of wild type proteins. The following three publications discuss these issues in 

more detail: 

Suplatov, D., Kirilin, E., & Švedas, V. (2016). Bioinformatic Analysis of Protein 

Families to Select Function-Related Variable Positions. In Understanding Enzymes: 

Function, Design, Engineering, and Analysis (pp. 351-385) Ed. Allan Svendsen. Pan 

Stanford. [link] 

Suplatov, D., Voevodin, V., & Švedas, V. (2015). Robust enzyme design: 

Bioinformatic tools for improved protein stability. Biotechnology journal, 10(3), 344-

355. [link] 

Suplatov, D., & Švedas, V. (2015). Study of functional and allosteric sites in protein 

superfamilies. Acta Naturae, 7(4), 27, 34-45. [link] 

The output alignment of the parMATT is compatible with Modes 2 and 3 of 

the Mustguseal server. This user-built core structural alignment can be submitted to 

the Mustguseal server to build a larger structure-guided sequence alignment of the 

corresponding superfamily by incorporating all available information about sequences 

of homologous proteins from public databases. 

 

 

 

 

 

https://doi.org/10.1201/b19951-13
https://doi.org/10.1002/biot.201400150
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4717248/
https://biokinet.belozersky.msu.ru/mustguseal


29 
 

The parMATT’s license 

 

The parMATT software is licensed under the GNU public license version 2.0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



30 
 

Citing parMATT 
 

If you find parMATT or its results useful please cite our work: 

Shegay M., Suplatov D., Popova N., Švedas V., Voevodin Vl. (2019) parMATT: 

Parallel multiple alignment of protein 3D-structures with translations and twists for 

distributed-memory systems, Bioinformatics DOI:10.1093/bioinformatics/btz224 

The parMATT is based on the MATT algorithm and code: 

Menke, M., Berger, B., & Cowen, L. (2008). Matt: local flexibility aids protein 

multiple structure alignment. PLoS Comput Biol., 4(1), e10. 

 

 

 

 

 

 

https://dx.doi.org/10.1093/bioinformatics/btz224

