Open-access Mustguseal platform

for bioinformatic analysis in computational enzymology

Dmitry Suplatov^{1*}, Yana Sharapova², Daria Timonina², Elena Schmalhausen¹, Kateryna Fesko⁵, Nina Popova³, Vladimir Muronets¹, Vladimir Voevodin^{3,4}, Vytas Švedas^{1,2}

¹ Belozersky Institute of Physicochemical Biology, ² Faculty of Bioengineering and Bioinformatics, ³ Faculty of Computational Mathematics and Cybernetics, ⁴ Research Computing Center at Lomonosov Moscow, State University, Moscow, Russia; ⁵ - Institute of Organic Chemistry, Graz University of Technology, Graz, Austria; d.a.suplatov@belozersky.msu.ru

Comparative analysis of homologous proteins in a functionally diverse superfamily is a valuable tool at studying structure-function relationship, but represents a methodological challenge. We have developed an open-access platform available at https://biokinet.belozersky.msu.ru/mustguseal consisting of free on-line methods to study the structure-function relationship in proteins, to select the most promising hot-spots for implementation of novel functions, improvement of stability and evolvability of useful proteins/enzymes, and to design their selective modulators.

The key concept is to study the structure-function relationship OŤ a particular protein by systematic bioinformatic the analysis of Protein corresponding superfamily of interest

and structural data corresponding to the superfamily

1. Construct multiple alignment of the protein superfamily

2. Annotate the protein of interest according to the bioinformatic analysis of the superfamily

as determinants of functional diversity and binding specificity

[*Nucleic Acids Res.,* 2014; 10.1093/nar/gku448]

....TW**S**QG.... ...GG**S**YG... ...GG**S**YG... ...GE**S**YG... •GE**S**FA.... ...GN**S**WG...GG**S**MG.... **Conserved positions**

as determinants of common functional properties [J.Biomol.Struct.Dyn., 2014; 10.1080/07391102.2013.834514]

[*Bioinformatics*, 2018; 10.1093/bioinformatics/btx831]

The key web-server **Mustguseal** (i.e., Multiple Structure-Guided Sequence **Al**ignment of Protein Families) can automatically collect from public databases and align thousands of sequences and structures of proteins within a superfamily to produce a large

Disulfide engineering hot-spots

as a mechanism to support structure stability and regulate function [*Nucleic Acids Res.,* 2019; 10.1093/nar/gkz385]

Correlated mutations (Co-evolving residues)

as a mechanism of allosteric communication via a network of interacting residues, and a source of compensatory mutations for rational design [*J.Bioinform.Comput.Biol.*, 2018;10.1142/S021972001840005X]

structure-guided sequence alignment;

Four sister web-methods are available to further study the collected data;

3. Expert interpretation of the bioinformatic analysis followed by experimental evaluation • Patent #RU2661151, 2018

We have applied the developed methodology to study structure-functional relationship in various protein superfamilies, design improved enzymes and selective modulators of their activity:

- *FEBS J.*, 2018 (10.1111/febs.14486)
- *FEBS open bio*, 2018 (10.1002/2211-5463.12441) Patent #RU2564578, 2014
- *Biochimie*, 2019 (10.1016/j.biochi.2018.12.017)
- *PLoS ONE*, 2014 (10.1371/journal.pone.0100643)
- *Biotechnology J.*, 2015 (10.1002/biot.201400150)
- Protein Eng.Des.Sel., 2012 (10.1093/protein/gzs068)
- J.Biomol.Struct.Dyn., 2019 (10.1080/07391102.2018.1475260);

This work was supported by the RFBR grant #18-29-13060. HPC computing resources at the MSU were supported by the project RFMEFI62117X0011.